Generalized Hölder Continuity and Oscillation Functions
نویسندگان
چکیده
منابع مشابه
The Hölder continuity of solutions to generalized vector equilibrium problems
In this paper, by using a weaker assumption, we discuss the Hölder continuity of solution maps for two cases of parametric generalized vector equilibrium problems under the case that the solution map is a general set-valued one, but not a single-valued one. These results extend the recent ones in the literature. Several examples are given for the illustration of our results.
متن کاملOn Hölder-continuity of Oseledets subspaces
For Hölder cocycles over a Lipschitz base transformation, possibly noninvertible, we show that the subbundles given by the Oseledets Theorem are Höldercontinuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichmüller flow on the moduli space of abelian differentials. Following a recen...
متن کاملHölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملGlobal Multi-armed Bandits with Hölder Continuity
Standard Multi-Armed Bandit (MAB) problems assume that the arms are independent. However, in many application scenarios, the information obtained by playing an arm provides information about the remainder of the arms. Hence, in such applications, this informativeness can and should be exploited to enable faster convergence to the optimal solution. In this paper, formalize a new class of multi-a...
متن کاملHölder Continuity for Optimal Multivalued Mappings
Gangbo and McCann showed that optimal transportation between hypersurfaces generally leads to multivalued optimal maps – bivalent when the target surface is strictly convex. In this paper we quantify Hölder continuity of the bivalent map optimizing average distance squared between arbitrary measures supported on Euclidean spheres.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Physics, Analysis and Geometry
سال: 2018
ISSN: 1385-0172,1572-9656
DOI: 10.1007/s11040-018-9292-2